Question:
morse code?
thugonomics
2007-05-16 16:23:37 UTC
when it was invented and people didnt know english, how did foreign countries use this system if morse is based on the english alphabet? source?
Eleven answers:
?
2007-05-16 16:40:16 UTC
Morse code was not based on the English Alphabet but the Latin Alphabet. Therefore, all countries using the Latin alphabet could use it. Also, there are many types of morse. Some are still used where others have ended.



For example, Morse code was also used as an international standard for maritime communication until 1999, when it was replaced by the Global Maritime Distress Safety System. The French navy ceased using Morse code in 1997. the final message transmitted was "Calling all. This is our last cry before our eternal silence." I actually got to listen to it transmitted live on the radio which was quite moving. (just a side note)



Morse code has been used many times in music, print advertising, artwork, and as a plot device in films, television, and novels.

Check out the article on morse code and popular culture. very interesting
Felix
2007-05-16 23:27:23 UTC
Originally created for Samuel F. B. Morse's electric telegraph in the early 1840s, Morse code was also extensively used for early radio communication beginning in the 1890s



Morse code has been in use for more than 160 years — longer than any other electronic encoding system. What is called Morse code today is actually somewhat different from what was originally developed by Vail and Morse. The Modern International Morse code was created by Friedrich Clemens Gerke in 1848 and initially used for telegraphy between Hamburg and Cuxhaven in Germany. After some minor changes, in 1865 it was standardised at the International Telegraphy congress in Paris (1865), and later made the norm by the International Telecommunication Union (ITU) as International Morse code..
Scotty Doesnt Know
2007-05-16 23:33:42 UTC
Morse code was invented by an American, Samuel Morse. In 1865, the International Telegraphy Congress in Paris adopted an "internationalized" version of Morse code, which is the "Morse Code" that we know today. Samuel Morse's original Morse Code (commonly referred to as "American Morse") is rarely used today except in historical reinactments. International Morse code was later adopted by the International Telecommunications Union (ITU) which sets worldwide standards for telecommunications.
2007-05-17 00:16:09 UTC
Too many people have already exhausted wiki for you.



Morse code is far from dead. Amateur radio operators use it everyday on high frequency bands for communications around the world. Any number of nets of radio operators will be up and running with any disaster, around the world, for communication when all other forms of communication are out of service. Even the US Government, along with many others, have agreements with "ham" radio groups for communications in disasters. Morse code is used as a common language on radio.



There are symbols for the English language and other languages with specialty symbols. There are shortcut abbreviations using "Q" and "Z" codes which have specific meanings. These special codes are used to cut morse code to minimal usage but provide maximum information.
2007-05-16 23:26:59 UTC
.. | -.. --- -. | - | -.- -. --- .--



JK



In the early 19th century, all of the essential components necessary to construct an electrical communication system had been discovered. The most important of these were the battery by Volta, the relationship between electric current and magnetism by Oersted, and the electromagnet by Henry. It now remained for someone to find a practical method to combine these technologies into a working communication system.

Some commercial electrical communications systems existed in Europe as early as the 1830s. A classic example of this is the English "Needle Telegraph". The needle telegraph required two or more lines to form a complete circuit. It was also relatively slow and the design of the transmitting and receiving instruments was complex. Something simple and efficient was needed.



The Morse system of telegraphy was invented by Samuel Finley Breese Morse in the 1840s in the United States. "Morse Code" is essentially a simple way to represent the letters of the alphabet using patterns of long and short pulses. A unique pattern is assigned to each character of the alphabet, as well as to the ten numerals. These long and short pulses are translated into electrical signals by an operator using a telegraph key, and the electrical signals are translated back into the alphabetic characters by a skilled operator at the distant receiving instrument. It has also been acknowledged that Morse's partner Alfred Vail very likely assisted in the development of the code and the instruments used to transmit and receive it.



Morse telegraphy became the standard method of electrical communication in both the United States and Europe due to its simplicity and ability to work on inferior quality wires. In 1851, countries in Europe adopted a new code known as "continental" or "international" code. This new code was a modification of the original Morse. The new code eliminated the characters using spaced dots which were found to cause errors in transmission on undersea cables. The new code became the standard for all telegraph work except in North America where the original Morse was used on all landline circuits (except for undersea cable).



The applications of the Morse telegraph were many. The most well known of these to the general public was the commercial telegram service. The railroads were an early and enthusiastic user of the Morse system which improved the efficiency and safety of railroad operations manyfold. The Associated Press was originally an alliance of Morse telegraph services and operators dedicated to news dispatches. Industry found the telegraph indispensible for the transmission of business related communication including information on stocks and commodities. The American Civil War was the one of the first demonstrations of the military value of the telegraph in the control of troop deployment and intelligence. Even the flow of oil through pipelines was controlled by Morse telegraph.



In the 1920s automated teleprinter technology had become reliable enough to begin to replace the Morse operator. Manual landline telegraphy was slowly phased out until the 1960s when Western Union and the railroads discontinued use of their last Morse circuits. Morse continued to be used in Canada until the mid 1970s, and railroads in Mexico were still using the wire at least until 1990. A small but hardy group of retired telegraphers and telegraph enthusiasts continues to keep landline Morse alive in the US via a mode called "dial-up" telegraphy.



The study of manual telegraphy can be split into two major areas. The original application of the code was in what is referred to as "landline" telegraphy. Overhead wires or cable buried in the ground or in the ocean were used as a transmission line for the electromagnetic pulses. In the early 20th century, the Morse code was adapted to wireless transmission using radio waves. This became an extremely important commercial application of Morse code, particularly for communications with ships at sea. Eventually it was decided by international agreement that the "continental" code would be adopted for use in all radio communication. Thus telegraphy can be divided into its "landline" and "radio" applications.



Radiotelegraphy continues to be used commercially at the present time. In the United States, it is confined to a few shore stations communicating with ships at sea. This activity is expected to be gone in a few short years. Radiotelegraphy continues to be used by several tens of thousands of radio amateurs worldwide.



Currently, "Telegraph Lore" has a very strong landline flavor. I intend to continue this until someone submits some interesting material on radiotelegraphy. Any "Sparks" out there with some good stories to tell ?
imx2xg00d
2007-05-16 23:26:29 UTC
english was developed b4 morse code
2007-05-16 23:26:41 UTC
It was invented during the Industrial Revolution, and I believe it was only used in the U.S.
2007-05-16 23:27:54 UTC
Just like today, they translated it from english.
?
2007-05-16 23:28:15 UTC
http://en.wikipedia.org/wiki/Morse_code

I am not sure if this will have all the information you want, but wikipedia has an extensive article on the subject.
Kourtney B
2007-05-16 23:27:11 UTC
Really good question. maybe they all had a chart that showed them. and my friend thinks it was only used in the U.S.
jewle8417
2007-05-16 23:33:02 UTC
Morse code is a method for transmitting telegraphic information, using standardized sequences of short and long elements to represent the letters, numerals, punctuation and special characters of a message. The short and long elements can be formed by sounds, marks or pulses, and are commonly known as "dots" and "dashes" or "dits" and "dahs".



International Morse code is composed of six elements:



short mark, dot or 'dit' (·)

longer mark, dash or 'dah' (-)

intra-character gap (between the dots and dashes within a character)

short gap (between letters)

medium gap (between words)

long gap (between sentences — about seven units of time)

These six elements serve as the basis for International Morse code and therefore can be applied to the use of Morse code world-wide.



Morse code can be transmitted in a number of ways: originally as electrical pulses along a telegraph wire, but also as an audio tone, as a radio signal with short and long pulses or tones, or as a mechanical or visual signal (e.g. a flashing light) using devices like an Aldis lamp or a heliograph. Morse code is transmitted using just two states — on and off — so it was an early form of a digital code. However, it is technically not binary, as the pause lengths are required to decode the information.



Originally created for Samuel F. B. Morse's electric telegraph in the early 1840s, Morse code was also extensively used for early radio communication beginning in the 1890s. For the first half of the twentieth century, the majority of high-speed international communication was conducted in Morse code, using telegraph lines, undersea cables, and radio circuits. However, the variable length of the Morse characters made it hard to adapt to automated circuits, so for most electronic communication it has been replaced by more machinable formats, such as Baudot code and ASCII.



The most popular current use of Morse code is by amateur radio operators, although no longer a requirement for Amateur licensing in most countries, it also continues to be used for specialized purposes, including identification of navigational radio beacon and land mobile transmitters, plus some military communication, including flashing-light semaphore communications between ships in some naval services. Morse code is the only digital modulation mode designed to be easily read by humans without a computer, making it appropriate for sending automated digital data in voice channels, as well as making it ideal for emergency signaling, such as by way of improvised energy sources that can be easily "keyed" such as by supplying and removing electric power (e.g. by switching a breaker on and off).

Beginning in the 1830s, Samuel F. B. Morse and Alfred Vail developed an electric telegraph, which used electrical currents to control an electromagnet that was located at the receiving end of the telegraph wire. The technology available at the time made it impossible to print characters in a readable form, so the inventors had to devise an alternate means of communication. Beginning in 1837, William Cooke and Charles Wheatstone operated electric telegraphs in England, which also controlled electromagnets in the receivers; however, their systems used needle pointers that rotated to indicate the alphabetic characters being sent.



In contrast, Morse and Vail's initial telegraph, which first went into operation in 1844, made indentations on a paper tape when an electrical current was transmitted. Morse's original telegraph receiver used a mechanical clockwork to move a paper tape. When an electrical current was received, an electromagnet engaged an armature that pushed a stylus onto the moving paper tape, making an indentation on the tape. When the current was interrupted, the electromagnet retracted the stylus, and that portion of the moving tape remained unmarked.



The Morse code was developed so that operators could translate the indentations marked on the paper tape into text messages. In his earliest code, Morse had planned to only transmit numerals, and use a dictionary to look up each word according to the number which had been sent. However, the code was soon expanded to include letters and special characters, so it could be used more generally. The shorter marks were called "dots", and the longer ones "dashes", and the letters most commonly used in the English language were assigned the shortest sequences.



In the original Morse telegraphs, the receiver's armature made a clicking noise as it moved into and out of position to mark the tape. Operators soon learned to translate the clicks directly into dots and dashes, making it unnecessary to use the paper tape. When Morse code was adapted to radio, the dots and dashes were sent as short and long pulses. It was later found that people become more proficient at receiving Morse code when it is taught as a language that is heard, instead of one read from a page.[1][2][3] To reflect the sound of Morse code, practitioners began to vocalise a dash as "dah", and a dot as "dit".



Morse code was an integral part of international aviation. Commercial and military pilots were required to be familiar with it, both for use with early communications systems and identification of navigational beacons which transmitted continuous three letter ID's in Morse code. As late as the 1990s, aeronautical charts listed the three letter ID of each airport in Morse.



Morse code was also used as an international standard for maritime communication until 1999, when it was replaced by the Global Maritime Distress Safety System. When the French navy ceased using Morse code in 1997, the final message transmitted was "Calling all. This is our last cry before our eternal silence." See also: international distress frequency





[edit] Modern International Morse Code

Morse code has been in use for more than 160 years — longer than any other electronic encoding system. What is called Morse code today is actually somewhat different from what was originally developed by Vail and Morse. The Modern International Morse code was created by Friedrich Clemens Gerke in 1848 and initially used for telegraphy between Hamburg and Cuxhaven in Germany. After some minor changes, in 1865 it was standardised at the International Telegraphy congress in Paris (1865), and later made the norm by the International Telecommunication Union (ITU) as International Morse code. Morse's original code specification, largely limited to use in the United States, became known as American Morse code or "railroad code." American Morse is now very rarely used except in historical re-enactments.





[edit] Amateur radio



Vibroplex semiautomatic key. The paddle, when pressed to the right by the thumb, generates a series of dits, the length and timing of which are controlled by a sliding weight toward the rear of the unit. When pressed to the left by the knuckle of the index finger, the paddle generates a dah, the length of which is controlled by the operator. Multiple dahs require multiple presses. Left-handed operators use a key built as a mirror image of this oneInternational Morse code today is most popular among amateur radio operators, where it is commonly referred to as "Continuous-Wave" or "CW". The original amateur radio operators used Morse code exclusively, as voice-capable radio transmitters did not become commonly available until around 1920. Until 2003 the International Telecommunication Union (ITU) mandated Morse code proficiency as part of the amateur radio licensing procedure worldwide. However, the World Radiocommunication Conference of 2003 (WRC-03) made the Morse code requirement for amateur radio licensing optional.[4] Most countries subsequently removed the Morse requirement from their licence requirements.[5]



In the United States, until 1991 a demonstration of the ability to send and receive Morse code at 5 words per minute (WPM) was required to receive an amateur radio license from the Federal Communications Commission. Demonstration of this ability was still required for the privilege to use the HF bands. Until 2000, proficiency at the 20 WPM level was required to receive the highest level of amateur license (Extra Class); effective April 15, 2000, the FCC reduced the Extra Class requirement to 5 WPM.[6] Finally, effective February 23, 2007, the FCC eliminated the Morse code proficiency requirements for all amateur licenses.



While phone (voice) and data transmissions are limited to specific amateur radio bands, CW is the only form of communication that is permitted on all amateur bands—LF, MF, HF, UHF, and VHF. In some countries, certain portions of the amateur radio bands are reserved for transmission of Morse code signals only. Because Morse transmissions employ an on-off keyed radio signal, it requires less complex equipment than other forms of radio communication. Morse code also requires less bandwidth than voice communication, typically 100-150 Hz, compared to the roughly 2400 Hz used by single-sideband voice. Morse code is received as a high-pitched audio tone, so transmissions are easier to copy than voice through the noise on congested frequencies, and it can be used in very high noise / low signal environments. The fact that the transmitted energy is concentrated into a very limited bandwidth makes it possible to use narrow receiver filters, which suppress or eliminate interference on nearby frequencies. The narrow signal bandwidth also takes advantage of the natural aural selectivity of the human brain, further enhancing weak signal readability. This efficiency makes CW extremely useful for DX (distance) transmissions, as well as for low-power transmissions (commonly called "QRP operators", from the Q-code for "reduce power"). There are several amateur clubs that require solid high speed copy, the highest of these has a standard of 60 WPM. For a slower level, the American Radio Relay League offers a code proficiency certification program that starts at 10 WPM.



The relatively limited speed at which Morse code can be sent led to the development of an extensive number of abbreviations to speed communication. These include prosigns and Q codes, plus a restricted standardized format for typical messages. This use of abbreviations also facilitates communication between operators who do not share a common language and thus would have great difficulty in communicating using voice modes.



Although the traditional telegraph key (straight key) is still used by many amateurs, the use of semi- and fully-automatic electronic keyers (known as "bugs") is prevalent today. Computer software is also frequently employed to produce and decode Morse code radio signals.





[edit] Other uses



A commercially manufactured iambic paddle used in conjunction with an electronic keyer to generate high-speed Morse code, the timing of which is controlled by the electronic keyer. Manipulation of the paddles is as the Vibroplex, but pressing the right paddle generates a series of dahs. The actions are reversed for left-handed operatorsOperators skilled in Morse code can often understand ("copy") code in their heads at rates in excess of 40 WPM. International contests in code copying are still occasionally held. In July 1939 at a contest in Asheville, North Carolina Ted R. Elroy set a still-standing record for Morse copying, 75.2 WPM.[7] In his online book on high speed sending, William Pierpont N0HFF notes some operators may have passed 100 WPM. By this time they are "hearing" phrases and sentences rather than words. The fastest speed ever sent by a straight key was achieved in 1942 by Harry Turner W9YZE (d. 1992) who reached 35 WPM in a demonstration at a U.S. Army base.[8]



As of 2006 commercial radiotelegraph licenses are still being issued in the United States by the Federal Communications Commission. Designed for shipboard and coast station operators, they are awarded to applicants who pass written examinations on advanced radio theory and show 20 WPM code proficiency [this requirement is waived for "old" (20 WPM) Extra Class licensees]. However, since 1999 the use of satellite and very high frequency maritime communications systems (GMDSS) have essentially made them obsolete.



Radio navigation aids such as VORs and NDBs for aeronautical use broadcast identifying information in the form of Morse Code. Before using such aids, a pilot listens to the Morse code identification to ensure he or she is tuned to the proper aid.





[edit] Applications for the general public

In speed contests between expert Morse code operators and expert cellphone SMS text messaging users, Morse code has consistently won, leading to speculation that cellphone manufacturers might someday build interfaces for Morse code input. This interface would translate the Morse code input into text, so that it could be sent to any SMS-capable cellphone, thus the recipient would not need to know Morse code in order to read it. (There are third party applications already available for some cellphones that allow Morse code input for sending SMS (see external links)). Other speculated applications include taking an existing assistive application of Morse code and using the vibrating alert feature on the cellphone to translate SMS messages to Morse code for silent, hands free "reading" of the incoming messages. Several cellphones already have informative audible Morse code ring tones and alert messages, for example: many Nokia cellphones have an option to beep either "SMS" or "Connecting people" in Morse code when it receives an SMS text message.





[edit] Morse code as an assistive technology

Morse code has been employed as an assistive technology, helping people with a variety of disabilities to communicate. Morse can be sent by persons with severe motion disabilities, as long as they have some minimal motor control. In some cases this means alternately blowing into and sucking on a plastic tube ("puff and sip" interface). People with severe motion disabilities in addition to sensory disabilities (e.g. people who are also deaf or blind) can receive Morse through a skin buzzer. Products are available that allow a computer operating system to be controlled by Morse code, allowing the user access to the Internet and electronic mail.[9]



In one case reported in the radio amateur magazine QST an old shipboard radio operator who had a stroke and lost the ability to speak or write was able to communicate with his physician (a radio amateur) by blinking his eyes in Morse. A better confirmed case occurred in 1966 when prisoner of war Jeremiah Denton, brought on television by his North Vietnamese captors, Morse-blinked the word TORTURE.





[edit] Representation and timing

Morse messages are generally transmitted by a hand-operated device such as a telegraph key, so there are variations introduced by the skill of the sender and receiver — more experienced operators can send and receive at faster speeds. There are two "symbols" used to represent letters, called dots and dashes or (more commonly among CW users) dits and dahs. The length of the dit determines the speed at which the message is sent, and is used as the timing reference.



The speed of Morse code is typically specified in "words per minute" (WPM). In text-book, full-speed Morse, a dah is conventionally 3 times as long as a dit. The spacing between dits and dahs within a character is the length of one dit; between letters in a word it is the length of a dah (3 dits); and between words it is 7 dits. The Paris standard defines the speed of Morse transmission as the dot and dash timing needed to send the word "Paris" a given number of times per minute. The word Paris is used because it is precisely 50 "dits" based on the text book timing.



Below is an illustration of timing conventions. The phrase "MORSE CODE", in Morse code format, would normally be written something like this, where - represents dahs and . represents dits:



-- --- ·-· ··· · / -·-· --- -·· ·

M O R S E (space) C O D E

Next is the exact conventional timing for this phrase, with = representing "signal on", and . representing "signal off", each for the time length of exactly one dit:



1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789



M------ O---------- R------ S---- E C---------- O---------- D------ E

===.===...===.===.===...=.===.=...=.=.=...=.......===.=.===.=...===.===.===...===.=.=...=

^ ^ ^ ^ ^

| dah dit | |

symbol space letter space word space

People learning Morse code using the Farnsworth method, named for Donald R. "Russ" Farnsworth, also known by his call sign, W6TTB, are taught to send and receive letters and other symbols at their full target speed, that is with normal relative timing of the dots, dashes and spaces within each symbol for that speed. However, initially exaggerated spaces between symbols and words are used, to give "thinking time" to make the sound "shape" of the letters and symbols easier to learn. The spacing can then be reduced with practice and familiarity. Another popular teaching method is the Koch method, named after German psychologist Ludwig Koch, which uses the full target speed from the outset, but begins with just two characters. Once strings containing those two characters can be copied with 90% accuracy, an additional character is added, and so on until the full character set is mastered.



Morse code is often spoken or written with "dah" for dashes, "dit" for dots located at the end of a character, and "di" for dots located at the beginning or internally within the character. Thus, the following Morse code sequence:



-- --- ·-· ··· · / -·-· --- -·· ·

is verbally:



Dah-dah dah-dah-dah di-dah-dit di-di-dit dit, Dah-di-dah-dit dah-dah-dah dah-di-dit dit.



Note that there is little point in learning to read written Morse as above; rather, the sounds of all of the letters and symbols need to be learned, for both sending and receiving.





[edit] Letters, numbers, punctuation

This section includes inline links to audio files. If you have trouble playing the files, see Wikipedia Media help.



Character Code Character Code Character Code Character Code Character Code Character Code

A (info) · — J (info) · — — — S (info) · · · 1 (info) · — — — — Period [.] · — · — · — Colon [:] — — — · · ·

B (info) — · · · K (info) — · — T (info) — 2 (info) · · — — — Comma [,] — — · · — — Semicolon [;] — · — · — ·

C (info) — · — · L (info) · — · · U (info) · · — 3 (info) · · · — — Question mark [?] · · — — · · Double dash [=] — · · · —

D (info) — · · M (info) — — V (info) · · · — 4 (info) · · · · — Apostrophe ['] · — — — — · Plus [+] · — · — ·

E (info) · N (info) — · W (info) · — — 5 (info) · · · · · Exclamation mark [!] — · — · — — Hyphen, Minus [-] — · · · · —

F (info) · · — · O (info) — — — X (info) — · · — 6 (info) — · · · · Slash [/], Fraction bar — · · — · Underscore [_] · · — — · —

G (info) — — · P (info) · — — · Y (info) — · — — 7 (info) — — · · · Parenthesis open [(] — · — — · Quotation mark ["] · — · · — ·

H (info) · · · · Q (info) — — · — Z (info) — — · · 8 (info) — — — · · Parenthesis closed [)] — · — — · — Dollar sign [$] · · · — · · —

I (info) · · R (info) · — · 0 (info) — — — — — 9 (info) — — — — · Ampersand [&] · · · · At sign [@] · — — · — ·



There is no standard representation for the exclamation mark ( ! ), although the KW digraph (— · — · — —) was proposed in the 1980s by the Heathkit Company (a vendor of assembly kits for amateur radio equipment). While Morse code translation software prefers this version, on-air use is not yet universal as some amateur radio operators in Canada and the USA continue to prefer the older MN digraph (— — — ·) carried over from American landline telegraphy code.



On May 24, 2004—the 160th anniversary of the first public Morse telegraph transmission—the Radiocommunication Bureau of the International Telecommunication Union (ITU-R) formally added the "@" ("commercial at" or "commat") character to the official Morse character set, using the sequence denoted by the AC digraph (· — — · — ·). This sequence was reportedly chosen to represent "A[T] C[OMMERCIAL]" or the letter "a" inside the swirl appearing to be a "C".[10] The new character facilitates sending electronic mail addresses by Morse code and is notable since it is the first official addition to the Morse set of characters since World War I.





[edit] Non-English extensions to the Morse code

Character(s) Code Character(s) Code Character(s) Code Character(s) Code Character(s) Code

ä (also æ) · — · — ch — — — — é · · — · · ĵ · — — — · ŝ · · · — ·

à (also Ã¥) · — — · — ð · · — — · ĝ — — · — · ñ — — · — — þ · — — · ·

ç (also ĉ) — · — · · è · — · · – Ä¥ — · — — · ö (also ø) — — — · ü (also Å­) · · — —





[edit] Cyrillic extension to the Morse code

Cyrillic letters are represented using the representation of similar sounding Latin letters (e.g. Б≡B, В≡W, Г≡G, Д≡D, etc.). Cyrillic letters with no such Latin correspondences are assigned to Latin letters with no Cyrillic correspondences (e.g. Щ≡Q). The same correspondence was later used to create Russian national character sets and KOI-7, KOI-8).



Cyrillic Latin Code Cyrillic Latin Code Cyrillic Latin Code

А A • − Л L • − • • Ð¥ H • • • •

Б B − • • • М M − − Ц C − • − •

В W • − − Н N − • Ч Ö − − − •

Г G − − • О O − − − Ш CH − − − −

Д D − • • П P • − − • Щ Q − − • −

Е E • Р R • − • Ь (Ъ) X − • • −

Ж V • • • − С S • • • Ы (Ь) Y − • − −

З Z − − • • Т T − Э É • • − • •

И I • • У U • • − Ю Ü • • − −

Й J • − − − Ф F • • − • Я Ä • − • −

К K − • −



This order and representation reflects Russian national standard. Bulgarian standard is the same except for the two letters given in parentheses (Bulgarian language does not use Ы, while Ъ, missing in the Russian standard, is frequent)





[edit] Alternative display of more common characters for the international code

Some methods of teaching or learning morse code use the dichotomic search table below.





A graphical representation of the dichotomic search table: every time you hear a dit, move along the left branch and for every time you hear a dah, go along the right one, until you have found the equivalent letter of the morse signal you have just heard.



[edit] Morse code in popular culture

Main article: Morse code in popular culture

Morse code has been used many times in music, print advertising, artwork, and as a plot device in films, television, and novels. An ever-lengthening list of Morse code references is contained in the article noted above.


This content was originally posted on Y! Answers, a Q&A website that shut down in 2021.
Loading...